Matrix Algebras and Displacement Decompositions
نویسنده
چکیده
A class ξ of algebras of symmetric n × n matrices, related to Toeplitz-plus-Hankel structures and including the well-known algebra H diagonalized by the Hartley transform, is investigated. The algebras of ξ are then exploited in a general displacement decomposition of an arbitrary n× n matrix A. Any algebra of ξ is a 1-space, i.e., it is spanned by n matrices having as first rows the vectors of the canonical basis. The notion of 1-space (which generalizes the previous notions of L1 space [Bevilacqua and Zellini, Linear and Multilinear Algebra, 25 (1989), pp. 1–25] and Hessenberg algebra [Di Fiore and Zellini, Linear Algebra Appl., 229 (1995), pp. 49–99]) finally leads to the identification in ξ of three new (non-Hessenberg) matrix algebras close to H, which are shown to be associated with fast Hartley-type transforms. These algebras are also involved in new efficient centrosymmetric Toeplitz-plus-Hankel inversion formulas.
منابع مشابه
Noin~. ~ Matrix Decompositions Using Displacement Rank and Classes of Commutative Matrix Algebras
Using the notion of displacement rank, we look for a unifying approach to representations of a matrix A as sums of products of matrices belonging to commutative matrix algebras. These representations are then considered in case A is the inverse of a Toeplitz or a Toeplitz plus Hankel matrix. Some well-known decomposition formulas for A (Gohberg-Semencul or Kailath et al., Gader, Bini-Pan, and G...
متن کاملArens Regularity and Weak Amenability of Certain Matrix Algebras
Motivated by an Arens regularity problem, we introduce the concepts of matrix Banach space and matrix Banach algebra. The notion of matrix normed space in the sense of Ruan is a special case of our matrix normed system. A matrix Banach algebra is a matrix Banach space with a completely contractive multiplication. We study the structure of matrix Banach spaces and matrix Banach algebras. Then we...
متن کاملInfinite order decompositions of C*-algebras
The present paper is devoted to infinite order decompositions of C*-algebras. It is proved that an infinite order decomposition (IOD) of a C*-algebra forms the complexification of an order unit space, and, if the C*-algebra is monotone complete (not necessarily weakly closed) then its IOD is also monotone complete ordered vector space. Also it is established that an IOD of a C*-algebra is a C*-...
متن کاملKoszul Algebras Associated to Graphs
Quadratic algebras associated to graphs have been introduced by I. Gelfand, S. Gelfand, and Retakh in connection with decompositions of noncommutative polynomials. Here we show that, for each graph with rare triangular subgraphs, the corresponding quadratic algebra is a Koszul domain with global dimension equal to the number of vertices of the graph.
متن کاملSubdirect Decompositions of Lattice Effect Algebras
We prove a theorem about subdirect decompositions of lattice effect algebras. Further, we show how, under these decompositions, blocks, sets of sharp elements and centers of those effect algebras are decomposed. As an application we prove a statement about the existence of subadditive state on some block-finite effect algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 21 شماره
صفحات -
تاریخ انتشار 2000